

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/23 May/June 2016

Paper 2 AS Level Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		2	2 Mark Scheme				Syllabus	Paper	
			Cambridge International AS/A Level – May/June 2016 9702			9702	23		
1	(a)	scalars: energy, power and time					A1		
		veo	ctors	: momentum and weigh	nt			A1	[2]
	(b)	(i)	(i) triangle with right angles between 120 m and 80 m, <u>arrows</u> in correct direction and result displacement from start to finish <u>arrow</u> in correct direction and labelled R					B1	[1]
		(ii)	1.	average speed (= 200)/27) =	7.4 m s ⁻¹		A1	[1]
			2.	resultant displacemer	nt (= [12	0 ² + 80 ²] ^{1/2}) = 144 (m)		C1	
				average velocity (= 14	4/27) =	= 5.3(3) m s ⁻¹		A1	
				direction (= tan ⁻¹ 80/1	20) = 34	4° (33.7)		A1	[3]
2	(a)			atic: the reading is large nstant amount	er or sm	aller than (or varying from) the tr	ue reading	B1	
		ran	ldon	n: scatter in readings ab	out the	true reading		B1	[2]
	(b)	pre	cisi	on: the size of the small	est divis	sion (on the measuring instrumen	t)		
		or 0.0	1 m	n for the micrometer				B1	
		aco	cura	cy: how close (diameter) value	is to the true (diameter) value		B1	[2]
						energy/ability to do work of a <u>mas</u> ght in a gravitational field	<u>s</u> that it	B1	
			kinetic energy is energy/ability to do work a object/body/mass has due to its speed/velocity/motion/movement				B1	[2]	
	(b)	(i)	s	= [(u + v)f]/2	or	acceleration = 9.8/9.75 (using	gradient)	C1	
				= [(7.8 + 3.9) × 0.4]/2	or	$s = 3.9 \times 0.4 + \frac{1}{2} \times 9.75 \times (0.4)$) ²	C1	
			s	= 2.3(4) m				A1	[3]
		(ii)	а	= (v - u)/t or gradient of	of line			C1	
				= (7.8 – 3.9)/0.4 = 9.8	(9.75) m	$1 \mathrm{s}^{-2}$ (allow ± $\frac{1}{2}$ small square in re	adings)	A1	[2]
		= $(7.8 - 3.9)/0.4 = 9.8 (9.75) \text{ m s}^{-2}$ (allow $\pm \frac{1}{2}$ small square in readings)						1	A1

DIAT

Pa	age 3	Mark Scheme		Раре	ər
		Cambridge International AS/A Level – May/June 2016	9702	23	
	(iii)	$KE = \frac{1}{2} m v^2$		C1	
		change in kinetic energy = $\frac{1}{2}mv^2 - \frac{1}{2}mu^2$			
		$= \frac{1}{2} \times 1.5 \times (7.8^2 - 3.9^2)$		C1	
		= 34 (34.22) J		A1	[3]
	(c) wo	ork done = force × distance (moved) or <i>Fd</i> or <i>Fx</i> or <i>mgh</i> or <i>mgd</i> or <i>mg</i>	ух	M1	
		= $1.5 \times 9.8 \times 2.3$ = 34 (33.8) J (equals the change in KE)		A1	[2]
4	(a) (re	sultant force = 0) (equilibrium)			
		therefore: weight – upthrust = force from thin wire (allow tension in wire)			
	or 5.3	3 (N) – upthrust = 4.8 (N)		B1	[1]
	(b) dif	ference in weight = upthrust or upthrust = 0.5 (N)			
		$0.5 = ho ghA$ or $m = 0.5/9.81$ and $V = 5.0 imes 13 imes 10^{-6}$ (m	³)	C1	
		ho = 0.5/(9.81 × 5.0 × 13 × 10 ⁻⁶)		C1	
		= 780 (784) kg m ^{-3}		A1	[3]
5	(a) the	e <u>total</u> momentum of a system (of colliding particles) remains constar	nt	M1	
		provided there is no resultant external force acting on the system/isolated or closed system		A1	[2]
	(b) (i)	the <u>total</u> kinetic energy before (the collision) is equal to the total kin energy after (the collision)	ietic	B1	[1]
	(ii)	$p (= mv = 1.67 \times 10^{-27} \times 500) = 8.4 (8.35) \times 10^{-25} \mathrm{Ns}$		A1	[1]
	(iii)	1. $mv_{\rm A}\cos 60^\circ + mv_{\rm B}\cos 30^\circ$ or $m(v_{\rm A}^2 + v_{\rm B}^2)^{1/2}$		B1	
		2. $mv_{\rm A}\sin 60^{\circ} + mv_{\rm B}\sin 30^{\circ}$		B1	[2]
	(iv)	8.35×10^{-25} or $500m = mv_A \cos 60^\circ + mv_B \cos 30^\circ$ and $0 = mv_A \sin 60^\circ + mv_B \sin 30^\circ$			
		or using a vector triangle		C1	
		$v_{\rm A} = 250 {\rm ms^{-1}}$		A1	
		$v_{\rm B} = 430 \ (433) {\rm m s^{-1}}$		A1	[3]

Page	4	Mark Scheme	Syllabus	Pap	er
•		Cambridge International AS/A Level – May/June 2016	9702	23	
(a) oh		m is volt per ampere or volt/ampere		B1	[1]
(b) (i)	$R = \rho l / A$		B1	
		$R_{\rm P} = 4\rho(2l) / \pi d^2$ or $8\rho l / \pi d^2$ or $R_{\rm Q} = \rho l / \pi d^2$			
		<i>or</i> ratio idea e.g. length is halved hence <i>R</i> halved and diameter is halve <i>R</i> is 1/4	ed hence	C1	
		$R_{Q} (= 4\rho l/\pi 4d^{2}) = \rho l/\pi d^{2}$ = $R_{P}/8$ (= 12/8) = 1.5 Ω		A1	[3]
	(ii)	power = $I^2 R$ or V^2 / R or VI		C1	
		= $(1.25)^2 \times 12 + (10)^2 \times 1.5$ or $(15)^2/12 + (15)^2/1.5$ or 15×11.5	25	C1	
		= (18.75 + 150 =) 170 (168.75) W		A1	[3
	(iii)	$I_{\rm P}$ = (15/12 =) 1.25 (A) and $I_{\rm Q}$ = (15/1.5 =) 10 (A)		C1	
		$v_{\rm P}/v_{\rm Q} = I_{\rm P} n A_{\rm Q} e / I_{\rm Q} n A_{\rm P} e \text{ or } (1.25 \times \pi d^2) / (10 \times \pi d^2/4)$		C1	
		= 0.5		A1	[3
(a)) (i)	 alter distance from vibrator to pulley alter frequency of generator (change tension in string by) changing value of the masses 			
		any two		B2	[2
	(ii)	points on string have <u>amplitudes</u> varying from maximum to zero/min	imum	B1	[1
(b) (i)	60° or $\pi/3$ rad		A1	[1
	(ii)	ratio = $[3.4/2.2]^2$		C1	
		= 2.4 (2.39)		A1	[2

7 (a)

6

_	
E	Т
Г	

Page 5		Mark Scheme		Paper	
		Cambridge International AS/A Level – May/June 2016	9702	23	
(a)	0	α-particle is 2 protons and 2 neutrons; β^+ -particle is positive electron, α-particle has charge +2e; β^+ -particle has + <i>e</i> charge α-particle has mass 4u; β-particle has mass (1/2000)u α-particle made up of hadrons; β^+ -particle a lepton	/positron		
	E	ny three		B3	[3
(b)) 1	$p \to {}^{1}_{0}n + {}^{0}_{1}\beta + {}^{0}_{0}\nu$			
	а	Il terms correct		M1	
	а	Il numerical values correct (ignore missing values on ν)		A1	[2
(c)) (i) 1. proton: up, up, down/uud		B1	
		2. neutron: up, down, down/udd		B1	[2
	(i	 i) up quark has charge +2/3 (e) and down quark has charge -1/3 total is +1(e) 	(e)	B1	[1